
Probabilistically Bounded Staleness for Practical

Partial Quorums

Peter Bailis
Shivaram Venkataraman
Joseph M. Hellerstein
Michael Franklin
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-4

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.html

January 3, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
03 JAN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Probabilistically Bounded Staleness for Practical Partial Quorums

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Modern storage systems employing quorum replication are often configured to use partial, non-strict
quorums. These systems wait only for a subset of their replicas to respond to a request before returning an
answer, without guaranteeing that read and write replica sets intersect. While these partial quorum
mechanisms provide only basic eventual consistency guarantees, with no limit to the recency of data
returned, these configurations are frequently ?good enough? for practitioners given their latency benefits.
In this work we discuss why partial quorums are often acceptable in practice by analyzing the staleness of
data they return. Extending prior work on strongly consistent probabilistic quorums and using models of
Dynamo-style anti-entropy processes, we introduce Probabilistically Bounded Staleness (PBS) consistency,
which provides expected bounds on staleness with respect to both versions and wall clock time. We derive a
closed-form solution for versioned staleness and model real-time staleness for representative Dynamo-style
systems under internet-scale production workloads. We quantitatively demonstrate why, in practice,
eventually consistent systems employing partial quorums often serve consistent data.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Probabilistically Bounded Staleness
for Practical Partial Quorums

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica
University of California, Berkeley

{pbailis, shivaram, franklin, hellerstein, istoica}@cs.berkeley.edu

All good ideas arrive by chance.—Max Ernst

ABSTRACT
Modern storage systems employing quorum replication are often
configured to use partial, non-strict quorums. These systems wait
only for a subset of their replicas to respond to a request before re-
turning an answer, without guaranteeing that read and write replica
sets intersect. While these partial quorum mechanisms provide
only basic eventual consistency guarantees, with no limit to the re-
cency of data returned, these configurations are frequently “good
enough” for practitioners given their latency benefits. In this work,
we discuss why partial quorums are often acceptable in practice
by analyzing the staleness of data they return. Extending prior
work on strongly consistent probabilistic quorums and using mod-
els of Dynamo-style anti-entropy processes, we introduce Proba-
bilistically Bounded Staleness (PBS) consistency, which provides
expected bounds on staleness with respect to both versions and wall
clock time. We derive a closed-form solution for versioned stale-
ness and model real-time staleness for representative Dynamo-style
systems under internet-scale production workloads. We quantita-
tively demonstrate why, in practice, eventually consistent systems
employing partial quorums often serve consistent data.

1. INTRODUCTION
Modern distributed storage systems need to be scalable, highly

available, and fast. These systems typically replicate data across
different machines and often across datacenters for two reasons:
first, to provide high availability when components fail and, second,
to provide improved performance by serving requests from multi-
ple replicas. In order to provide predictably low read and write la-
tency, systems often eschew protocols guaranteeing consistency of
reads1 and instead opt for eventually consistent protocols [4, 6, 21,
23, 38, 39, 56]. However, weak eventually consistent systems make
no guarantees on the staleness (recency in terms of versions writ-
ten) of data items returned except that the system will “eventually”
return the most recent version in the absence of new writes [62].

1Note that this distributed replica consistency is different from
transactional consistency provided by ACID semantics [51, 59].

Distributed quorums can be used to ensure strong consistency
across multiple replicas of a data item by overlapping read and
write replica sets. However, waiting for responses from the po-
tentially large resulting quorum sizes increases operation latency,
an important consideration for service operators [57]. For exam-
ple, at Amazon, 100 ms of additional latency resulted in a 1% drop
in sales [44], while 500 ms of additional latency in Google’s search
resulted in a corresponding 20% decrease in traffic [45]. At scale,
these decreases correspond to large amounts of lost revenue.

Employing partial or non-strict quorums lowers operation la-
tency in quorum replication. With partial quorums, sets of replicas
written to and read from are not guaranteed to overlap: given N
replicas and read and write quorum sizes R and W, partial quo-
rums imply R+W≤N . Modern quorum-based data systems such
as Dynamo [21] and its open source descendants Apache Cassan-
dra [41], Basho Riak [3], and Project Voldemort [24] offer a choice
between these two modes of quorum replication: overlapping quo-
rums, providing strong consistency, and partial quorums, providing
eventual consistency.

Operators frequently employ partial quorums [1, 4, 23, 38, 56,
64] despite the weak guarantees provided by eventual consistency—
a controversial decision [32, 47, 58, 59]. These partial quorums are
often acceptable for operators due to their latency benefits, which
are especially important as latencies grow (e.g., a wide-area net-
work scenario) [6, 23, 32, 33]. Many programs are carefully de-
signed to handle staleness through design patterns such as compen-
sation (e.g., memories, guesses, and apologies) [33] and associa-
tive and commutative operations (e.g., timelines, logs, and notifi-
cations) [12]. In general, however, unbounded staleness poses sig-
nificant challenges and is undesirable in practice. The proliferation
of partial quorum configurations suggests that many applications
can tolerate occasional cases of staleness and that stale data tends
to be “fresh enough” in most cases.

While common practice suggests that weak eventual consistency
is a viable solution for many operators, to date, this observation
has been mostly anecdotal. In this work, we quantify the degree
to which eventual consistency is both eventual and consistent and
explain why. Under worst-case conditions, eventual consistency re-
sults in an unbounded degree of data staleness, but, as we will show,
the average case is often different. Eventually consistent data stores
cannot promise immediate and perfect consistency but, for varying
degrees of certainty, can offer staleness bounds with respect to time
(“how eventual”) and version history (“how consistent”). There
is little prior work describing how to make these consistency and
staleness predictions under practical conditions. The current state
of the art requires that users make rough guesses or perform online
profiling to determine the consistency provided by their data stores.

To do better, we need to know when and why eventually consis-

tent systems return stale data and how to quantify the staleness of
the data they return. In this work, we answer these questions in the
context of quorum replicated data stores by expanding theoretical
research on probabilistic quorums [50, 52] to account for multi-
version staleness, anti-entropy [22], and quorum dissemination pro-
tocols as used in today’s systems. More precisely, we present algo-
rithms and models for predicting the staleness of partial quorums,
called Probabilistically Bounded Staleness (PBS) for partial quo-
rums. There are two common axes for measuring staleness in the
literature: versions [40, 67] and wall clock time [65, 66]. PBS
can be used to analyze both measures, describing the probability of
reading a version t seconds after it is written (t-visibility, or “how
eventual is eventual consistency?”), of reading one of the last k
versions of a data item (k-staleness, or “how consistent is even-
tual consistency?”), and of experiencing a combination of the two
(〈k, t〉-staleness). PBS does not propose new mechanisms to en-
force deterministic staleness bounds [40, 55, 65, 66, 67]; instead,
our goal is to provide a lens for analyzing and improving the be-
havior of existing, widely-deployed systems.

We provide closed-form solutions for PBS k-staleness and use
Monte Carlo methods to explore the trade-off between latency and
t-visibility. We present a detailed study of Dynamo-style PBS t-
visibility using production latency distributions to explain why real-
world operators frequently choose to employ partial quorums. We
show how relatively long-tailed one-way write latency distributions
affect the time required for a high probability of consistent reads.
We quantitatively demonstrate how moving from spinning disks to
solid-state drives has a large impact on staleness (e.g., 1.85ms ver-
sus 45.5ms wait time required for a 99.9% probability of consis-
tent reads). We also make quantitative observations regarding the
latency-consistency trade-offs offered by partial quorums. For ex-
ample, under another production workload, we observe an 81.1%
latency improvement at the 99.9th percentile (230 to 43.3ms) for
a 202ms window of inconsistency with 99.9% confidence. While
the benefit of these trade-offs is application-specific, our analysis
demonstrates many of the performance benefits that lead many op-
erators to choose weak consistency.

We make the following contributions in this paper:

• We develop the theory of Probabilistically Bounded Stale-
ness (PBS) for partial quorums. PBS describes the probabil-
ity of staleness across both versions (k-staleness) and time
(t-visibility) as well as the probability of monotonic reads
consistency.

• We provide a closed-form analysis of k-staleness demon-
strating how the probability of receiving data k versions stale
is exponential in k. As a corollary, k-staleness tolerance also
exponentially lowers quorum system load.

• We provide a model for t-visibility in Dynamo-style partial
quorum systems, WARS, showing how staleness is dependent
on message reordering due to latency. We evaluate the t-
visibility of Dynamo-style systems using a combination of
synthetic and production latency models.

2. BACKGROUND
In this section, we provide background regarding quorum sys-

tems both in theoretical academic literature and in practice. We be-
gin by introducing prior work on traditional and probabilistic quo-
rum systems. We next discuss Dynamo-style quorums, currently
the most widely deployed protocol for storage systems employing
quorum replication. Finally, we survey reports of practitioner usage
of partial quorums for three Dynamo-style data systems.

2.1 Quorum Foundations: Theory
Quorum systems have long been proposed as a replication strat-

egy for distributed data [26]. Under quorum replication, a data
storage system writes a data item by sending it to a set of replicas,
called a write quorum. To serve reads, the data system fetches the
data from a possibly different set of replicas, called a read quorum.
For reads, the storage system compares the set of values returned
by the replicas, and, given a total ordering over versions of the data
item2, can return the most recent value (or all values received, if
desired). For each operation, read and write quorums are chosen
from a set of sets of replicas, known as a quorum system, with one
system per data item. There are many ways to configure quorum
systems, but one simple solution is to use read and write quorums
of fixed sizes, which we will denote R and W , respectively, for a
set of nodes of size N . To reiterate, a quorum replicated data sys-
tem uses one quorum system per data item. Across data items, the
quorum systems need not be identical

Informally, a strict quorum system is a quorum system with the
property that any two quorums (sets) in the quorum system overlap
(have non-empty intersection). This ensures consistency. The min-
imum sized quorum defines the system’s fault tolerance, or avail-
ability. A simple example of a strict quorum system is the majority
quorum system, in which each quorum is of size dN

2
e. However,

the theory literature contains many alternative quorum system de-
signs providing varying asymptotic properties of capacity, scalabil-
ity, and fault tolerance, from tree-quorums [9] to grid-quorums [53]
and highly-available hybrids [8]. Jiménez-Peris et. al provide an
overview of traditional, strict quorum systems [37].

Partial quorum systems are natural extensions of strict quorum
systems: at least two quorums in a partial quorum system do not
overlap. There are two relevant variants of partial quorum systems
in the literature: probabilistic quorum systems and k-quorums.

Probabilistic quorum systems provide probabilistic guarantees of
quorum intersection. By scaling the number of replicas, we can
achieve an arbitrarily high probability of consistency [50]. Intu-
itively, this is a consequence of the Birthday Paradox: as the num-
ber of replicas increases, the probability of non-intersection be-
tween any two quorums decreases. To the best of our knowledge,
probabilistic quorums have only been used to study the probability
of strong consistency and have not been used to study bounded stal-
eness, particularly in the presence of anti-entropy [22]. Merideth
and Reiter provide an overview of these systems [52].

As an example of a probabilistic quorum system, given N repli-
cas and randomly chosen read and write quorums of sizes R and
W , we can calculate the probability that the read quorum does not
contain the last written version. This probability of inconsistency is
the number of quorums of size R composed of nodes that were not
written to in the write quorum divided by the number of possible
quorums of size R:

ps =

(
N−W
R

)(
N
R

) (1)

The probability of inconsistency is high except for large N . With
N = 100, R = W = 30, ps = 1.88× 10−6 [10]. However, with
N = 3, R = W = 1, ps = .6. The asymptotics of these systems
are excellent—but only asymptotically.
k-quorum systems provide deterministic guarantees that a partial

quorum system will return values that are within k versions of the
most recent write [10]. In the single writer scenario, a round-robin

2This total ordering can be achieved using globally synchronized
clocks [46] or using a causal ordering provided by mechanisms
such as vector clocks [42] with commutative merge functions [47]

write scheduling scheme where each write is sent to N
k

replicas
ensures that any replica is no more than k versions out-of-date.
However, with multiple writers, the global ordering properties that
the single-writer was able to control are lost, and the best known
algorithm for the pathological case results in a lower bound of
(2N − 1)(k − 1) +N versions staleness [11].

This prior work makes two important assumptions. First, it typ-
ically models quorum sizes as fixed, where the set of nodes with
a version does not grow over time. Prior work explored “dynamic
systems” in terms of quorum membership churn [7], network-aware
quorum placement [25, 29], and network partitions [34] but did not
model write propagation. Second, it frequently assumes Byzantine
failure. We revisit these assumptions in the next section.

2.2 Quorum Foundations: Practice
In practice, many distributed data management systems use quo-

rums as a replication mechanism. Amazon’s Dynamo [21] is the
progenitor of a class of eventually-consistent key-value stores that
includes Apache Cassandra3, Riak4, and Voldemort5. All use the
same variant of quorum-style replication, and we are not aware of
any significantly different, widely adopted data systems using quo-
rum replication. However, with some work, we believe that other
styles of replication can adopt our methodology. We describe key-
value stores here, but any replicated data store can use quorums,
including full RDBMS systems.

Dynamo-style quorum systems employ one quorum system per
key, typically maintaining the mapping of keys to quorum systems
using a consistent-hashing scheme or a centralized membership
protocol. Each node stores multiple keys. As shown in Figure 1,
client read and write requests are sent to a node in the system clus-
ter, which forwards the request to all nodes assigned to that key
as replicas. The coordinating node considers an operation com-
plete when it has received responses from a pre-defined number of
replicas. Accordingly, without message loss, all replicas eventu-
ally receive all writes. This means that the write and read quorums
chosen for a request depend on which nodes respond to the request
first. In Dynamo terminology, the quorum size, or replication fac-
tor, is defined as N , the number of replica responses required for a
successful read is defined asR, and the number of replica acknowl-
edgments required for a successful write is defined asW . Dynamo-
style systems are guaranteed to be consistent when R +W > N .
SettingW > dN/2e ensures that a majority of replicas will will re-
ceive a write in the presence of multiple concurrent write requests.

There are significant differences between quorum theory and data
systems used in practice. First, replication factors for distributed
data systems are relatively low. Typical replication factors are be-
tween one and three [4, 23, 30]. Second, (in the absence of failure),
in Dynamo-style partial quorums, the write quorum size increases
even after the operation returns, growing via anti-entropy [22]. More-
over, requests are sent to all replicas, however only the first R re-
sponses are considered. As a matter of nomenclature (and to disam-
biguate against “dynamic” quorum membership protocols), we will
refer to these systems as expanding partial quorum systems. We
discuss additional anti-entropy in Section 4.2. Third, as in much of
the practical literature, practitioners largely focus on fail-stop fail-
ure instead of Byzantine failure [17]. Following standard practice,
we do not consider Byzantine failure.

3Apache Cassandra. cassandra.apache.org
4Basho Riak. www.basho.org
5Project Voldemort. www.project-voldemort.com

Replica Replica Replica

Coordinator

Write forwardedResponse

Client write
request

Response

Ack after W
replicas respond

KVS

Figure 1: Diagram of control flow for client write to Dynamo-
style quorum. Here,N = 3,W = 2. The client write is handled
by a coordinator node and sent to all replicas. The write suc-
ceeds when W replicas respond. Note that the coordinator is
possibly a replica as well, invoking a local write.

2.3 Typical Quorum Configurations
For improved latency, operators often setR+W ≤ N . Here, we

survey quorum configurations according to practitioner accounts.
Many operators appear to use partial quorum configurations, fre-
quently citing performance benefits and high availability.

Cassandra defaults to N=3, R=W=1 [4]. The Apache Cassan-
dra 1.0 documentation claims that “a majority of users do writes at
consistency level [W=1]”, while the Cassandra Query Language
defaults to R=W=1 as well [1]. Production Cassandra users re-
port usingR=W=1 in the “general case” because it provides “max-
imum performance” [64], which appears to be a commonly held
belief [38, 56]. Cassandra has a “minor” patch [2] for session guar-
antees [61] that is not currently used [16]; according to our discus-
sions with developers, this is due to lack of interest.

Riak defaults to N=3, R=W=2 [14, 15]. Users suggest using
R=W=1, N=2 for “low value” data (and strict quorum variants
for “web,” “mission critical,” and “financial” data) [39, 48].

Finally, Voldemort does not provide sample configurations, but
Voldemort’s authors (and operators) at LinkedIn [23] often choose
N=c, R=W=dc/2e for odd c. For applications requiring “very
low latency and high availability,” LinkedIn deploys Voldemort
with N=3, R=W=1. For other applications, LinkedIn deploy-
ments Voldemort with N=2, R=W=1, providing “some consis-
tency,” particularly when N=3 replication is not required. Ad-
ditionally, Voldemort supports a concept of preferred reads and
writes, meaning it will block until either the preferred number of
replicas respond or a timeout occurs, at which point the request
succeeds. In the low latency case, preferred reads is either two or is
disabled. In theN=2 case, preferred reads and preferred writes are
set to two. Voldemort also differs from Dynamo in that it sends read
requests to R of N replicas (not N of N) [24]; this decreases load
per replica and network traffic at the expense of read latency and
potential availability. Provided the per-request staleness probabili-
ties are independent, this does not affect staleness: even when send-
ing reads to N replicas, coordinators only wait for R responses.

3. PROBABILISTICALLY BOUNDED
STALENESS

In this section, we introduce Probabilistically Bounded Stale-
ness, which describes the consistency provided by existing even-
tually consistent data stores. We introduce the notions of PBS
k-staleness, which stochastically bounds the staleness of versions
returned by read quorums, PBS t-visibility, which stochastically
bounds the time before a committed version appears to readers, and
PBS 〈k, t〉-staleness, a combination of the two prior models.

read returns

Version Tim
elines

previous read
B.)

read start
read returns

A.)
vivi-k

1+γgw/γcr

read start

acceptable versions

acceptable versions
k

Figure 2: Versions returnable by read operations under PBS
k-staleness (A) and PBS monotonic reads (B). In k-staleness,
the read operation will return a version no later than k ver-
sions older than the last committed value when it started; later
versions may be committed during the read and may also be
returned. In monotonic reads consistency, acceptable staleness
depends on the number of versions committed since the client’s
last read.

We first introduce k-staleness because it is self-contained, with
a simple closed-form solution. In comparison, t-visibility is more
difficult, involving several additional variables. Accordingly, this
section proceeds in order of increasing difficulty, and the remainder
of the paper largely addresses the complexities of t-visibility.

Practical concerns guide the following theoretical contributions.
We begin by considering a model without quorum expansion or
other anti-entropy. For the purposes of a running example, as in
Equation 1, we assume that W (R) of N replicas are randomly
selected for each write (read) operation. Similarly, we consider
fixedW ,R andN across multiple operations. Next, we expand our
model to consider write propagation and time-varying W sizes in
expanding partial quorums. In this section, we discuss anti-entropy
in general, however we model Dynamo-style quorums in Section 4.
We discuss further refinements to our assumptions in Section 6.

3.1 PBS k-staleness
Probabilistic quorums allow us to determine the probability of

returning the most recent value written to the database, but do not
describe what happens when the most recent value is not returned.
Here, we determine the probability of returning a value within a
bounded number of versions. In the following formulation, we con-
sider traditional, non-expanding write quorums (no anti-entropy):

Definition 1. A quorum system obeys PBS k-staleness consis-
tency if, with probability 1 − psk, at least one value in any read
quorum will have been committed within k versions of the latest
committed version when the read begins.

Versions whose writes that are not yet committed (in-flight) may be
returned by a read (see Figure 2A). The k-quorum literature defines
these as k-regular semantics [10].

The probability of returning a version of a key within the last
k versions committed is equivalent to intersecting one of k inde-
pendent write quorums. Given the probability of a single quorum
intersection p, the probability of intersecting one of the last k inde-
pendent quorums is pk. In our example quorum system, the proba-
bility of non-intersection is Equation 1 exponentiated by k:

psk =

((
N−W
R

)(
N
R

))k
(2)

When N=3, R=W=1, this means that the probability of re-
turning a version within 2 versions is .5, within 3 versions .703,
and within 5 versions > .868, and 10 versions > .98. When
N=3,R=1, W=2 (equivalently, R=2, W=1), these probabilities
increase: k=1→ .6, k=2→ .8, and k=5→> .995.

This closed form solution holds for quorums that do not change
size over time. For expanding partial quorum systems, this solution
is an upper bound on the probability of staleness. We discuss the
load improvements offered by PBS k-staleness as discussed in the
quorum system literature in Appendix A.

3.2 PBS Monotonic Reads
PBS k-staleness can be used to predict whether a client will ever

older staler data than it has already read, a well-known session
guarantee called monotonic reads consistency [61]. This is par-
ticularly useful when clients do not need to see the most recent ver-
sion of a data item but still require a notion of “forward progress”
through versions, as in streaming changelogs or timelines.

Definition 2. A quorum system obeys PBS monotonic reads con-
sistency if, with probability at least 1− psMR, at least one value in
any read quorum returned to a client is the same version or a newer
version than the last version that the client previously read.

To guarantee that a client sees monotonically increasing ver-
sions, it can continue to contact the same replica [62] (provided
the “sticky” replica does not fail). However, this is insufficient for
strict monotonic reads (where the client reads strictly newer data if
it exists in the system). Definition 2 can be adapted to accommo-
date strict monotonic reads by requiring that, if a more recent data
version is available, it is returned.

PBS monotonic reads consistency is a special case of PBS k-
staleness (see Figure 2B), where k is determined by a client’s rate
of reads from a data item (γcr) and the global, system-wide rate of
writes to the same data item (γgw). If we know these rates exactly,
the number of versions between client reads is γgw

γcr
, as shown in

Figure 2B. We can calculate the probability of probabilistic mono-
tonic reads as a special case of k-staleness where k = 1 +

γgw
γcr

.
For example, extending our running example from Equation 2:

psMR =

((
N−W
R

)(
N
R

))1+γgw/γcr

(3)

For strict monotonic reads, where we cannot read the version we
have previously read (assuming there are newer versions in the
database), we exponentiate with k =

γgw
γcr

.
In practice, we may not know these exact rates, but, by measur-

ing their distribution, we can calculate an expected value. By per-
forming appropriate admission control, operators can control these
rates to achieve monotonic reads consistency with high probability.

3.3 PBS t-visibility
Until now, we have considered only quorums that do not grow

over time. However, as we discussed in Section 2.2, real-world
quorum systems expand by asynchronously propagating writes to
quorum system members over time. This process is commonly
known as anti-entropy [22]. For generality, in this section, we
will discuss generic anti-entropy. However, we explicitly model
the Dynamo-style anti-entropy mechanisms in Section 4.

PBS t-visibility models the probability of inconsistency for ex-
panding quorums. Intuitively, PBS t-visibility captures the possi-
bility that a reader will observe a write t seconds after it commits.
Recall that we consider in-flight writes—which are more recent
than the last committed version—as non-stale.

Definition 3. A quorum system obeys PBS t-visibility consis-
tency if, with probability 1 − pst, any read quorum started at least
t units of time after the last version committed returns at least one
value that is at least as recent as the last committed version.

Overwriting data items effectively resets t-visibility; t-visibility
time is bounded by the time between writes. Intuitively, if two
writes to a key are spacedmmilliseconds apart, then the t-visibility
of the first write for t > m milliseconds is undefined; after m
milliseconds, there will be a newer version.

We denote the cumulative density function describing the num-
ber of replicas Wr that have received a particular version v (or a
version newer than v) t seconds after v commits as Pw(Wr, t).

By definition, for expanding quorums, ∀c ∈ [0,W], Pw(c, 0) =
1; at commit time,W replicas will have received the value with cer-
tainty. We can model the probability of PBS t-visibility for given t
by summing the conditional probabilities of each possibleWr:

pst =

(
N−W
N

)(
N
R

) +
∑

c∈(W,N]

(
N−c
N

)(
N
R

) · [Pw(c+1, t)−Pw(c, t)] (4)

However, the above equation assumes reads occur instantaneously
and writes commit immediately after W replicas have the version
(i.e., there is no delay acknowledging the write to the coordinat-
ing node). In the real world, writes need to be acknowledged and
read requests take time to arrive at remote replicas, increasing t.
Accordingly, Equation 4 is a conservative upper bound on pst.

In practice, Pw depends on the anti-entropy mechanisms in use
and the expected latency of operations and can be approximated
(Section 4) or measured online. For this reason, the load of a PBS t-
visible quorum system depends on write propagation and is difficult
to analytically determine for general-purpose expanding quorums.
Additionally, one can model both transient and permanent failures
by increasing the tail probabilities of Pw (Section 6).

3.4 PBS 〈k, t〉-staleness
We can combine the previous models to combine both versioned

and real-time staleness metrics to determine the probability that a
read will return a value no older than k versions stale if the last
write committed no sooner than t seconds ago:

Definition 4. A quorum system obeys PBS 〈k, t〉-staleness con-
sistency if, with probability 1− pskt, at least one value in any read
quorum will be within k versions of the latest committed version
when the read begins, provided the read begins t units of time after
the previous k versions commit.

The definition of pskt follows from the prior definitions:

pskt = (

(
N−W
R

)(
N
R

) +
∑

c∈[W,N)

(
N−c
R

)(
N
R

) · [Pw(c+ 1, t)− Pw(c, t)])k

(5)
In this equation, in addition to (again) assuming instantaneous reads,
we also assume the pathological case where the last k writes all oc-
curred at the same time. If we can determine the time since commit
for the last k writes, we can improve this bound by considering
each quorum’s pskt separately (individual t). However, predicting
(and enforcing) write arrival rates is challenging and may introduce
inaccuracy, so this equation is a conservative upper bound on pskt.

Note that the prior definitions of consistency are encapsulated by
PBS 〈k, t〉-staleness consistency. Probabilistic k-quorum consis-
tency is simply PBS 〈k, 0〉-staleness consistency, PBS monotonic
reads consistency is 〈1 +

γgw
γcr

, 0〉-staleness consistency, and PBS
t-visibility is 〈1, t〉-staleness consistency.

In practice, we believe it is easier to reason about staleness of
versions or staleness in terms of real time but not both together.
Accordingly, having derived a closed-form model for k-staleness,
in the remainder of this paper, we focus mainly on deriving more
specific models for t-visibility.

WRITE
(W)

wait for R
responses

Time

stale if
READ
arrives
 before
WRITE

wait for W
responses

send to N replicas
ReplicaCoordinator

ACK
(A)

READ
(R)

send to N replicas

RESPONSE
(S)

t seconds elapse

Figure 3: The WARS model for message ordering in Dynamo
describes the message flow and latencies between a coordinator
and a single replica for a write followed by a read t seconds
after commit. In an N replica system, this message flow occurs
N times, once for each of the N replicas. The read and write
may be handled by different coordinators.

4. DYNAMO-STYLE T -VISIBILITY
We have a closed-form analytical model for k-staleness, but t-

visibility is dependent on both the distributed quorum replication
algorithm and the anti-entropy processes employed by a data stor-
age system. In this section, we discuss PBS t-visibility in the
context of Dynamo-style data storage systems. We describe how
to model the probability of staleness in these systems and how to
asynchronously detect staleness.

4.1 Inconsistency in Dynamo: WARS Model
Dynamo-style quorum systems are inconsistent as a result of

read and write message reordering, a product of message delays.
Reads and writes are sent to all quorum members, so the stale-
ness under normal operation results only when all of the first R re-
sponses to a read request arrived at their respective replicas before
the last committed write request. To illustrate this phenomenon, we
introduce a model of message latency in Dynamo operation which,
for convenience, we will call WARS.

In Figure 3, we illustrate WARS using a space-time diagram for
messages between a coordinator and a single replica for a write
followed by a read t seconds after the write commits. This t corre-
sponds to the t in PBS t-visibility.

For a write, the coordinator sends N messages, one to each
replica. The message from coordinator to replica containing the
version to be written is delayed by a value chosen from distribution
W. The coordinator waits for W responses from the replicas before
it can consider the version committed. Each response acknowledg-
ing the write is delayed by a value chosen from the distribution A.

For a read, the coordinator sendsN messages, one to each replica.
The message from coordinator to replica containing the read re-
quest is delayed by a value chosen from distribution R. The coordi-
nator waits for R responses from the replicas before returning the
most recent value it receives. The read response from each replica
is delayed by a value chosen from the distribution S.

The read coordinator will return stale data if the firstR responses
received reached their respective replicas before the replicas re-
ceived the latest version (delayed by W). When R+W>N , this is
impossible. However, under partial quorums, this depends on the
latency distributions. If we denote the commit time as wt, a sin-
gle replica’s response is stale if r′ + wt + t < w′ for r′ chosen

from R and w′ chosen from W. Writes have time to propagate to
additional replicas both while the coordinator waits for all required
acknowledgments (A) and as read requests are subsequently sent
(R). Similarly, read responses are further delayed in transit (S) back
to the read coordinator, inducing further possibility of reordering.
Qualitatively, longer write tails and faster reads increase the chance
of staleness due to the possibility of reordering.

WARS considers the effect of message sending, delays, and re-
ception, but this represents a daunting analytical formulation. The
commit time represents an order statistic of W and N dependent
on both W and A. Furthermore, the probability that the ith returned
read message observes reordering is another order statistic of R
and N dependent on W,A,R, and S. Moreover, across responses, the
probabilities are dependent. These intertwined dependencies make
calculating the probability of staleness rather difficult. Dynamo is
straightforward to reason about and program but is difficult to an-
alyze in a simple closed form, which eludes us. As we discuss in
Section 5.1, we explore WARS using Monte Carlo methods, which
are straightforward to understand and implement.

4.2 WARS Scope
Proxying operations. Depending on which coordinator a client

contacts, some reads and writes may be served locally. In this case,
subject to local query processing delays, a read or write to R or W
nodes behaves like a read or write toR−1 orW −1 nodes, respec-
tively. Although we do not do so, WARS can be adopted to handle
local reads and writes. Determining whether requests will be prox-
ied (and, if not, which replicas serve which requests) is data store
and deployment-specific. Dynamo forwards write requests to a des-
ignated coordinator solely for the purpose of establishing a version
ordering [21, Section 6.4] (easily achievable through other mech-
anisms [36]). Dynamo’s authors observed a latency improvement
by proxying all operations and having clients act as coordinators—
Voldemort adopts this architecture [60].

Client-side delays. Many end-users will incur additional time
between their respective reads and writes due to latency required
to contact the service. Individuals making requests to web ser-
vices through their browsers will likely space sequential requests
by tens or hundreds of milliseconds due to client-to-server latency.
Although we do not consider this delay here, it is important to re-
member for practical scenarios because the delay between reads
and writes (t) may be large.

Additional anti-entropy. As we discussed in Section 2.2, anti-
entropy decreases the probability of staleness by further propagat-
ing versions between members. Dynamo-style systems also sup-
port additional anti-entropy processes [51]. One common process
is called read repair: when a read coordinator receives multiple
versions of a data item from different replicas in response to a read
request, it will attempt to (asynchronously) update the out-of-date
replicas with the most recent version [21, Section 5]. Read re-
pair acts like an additional write for every read, except old values
are re-written. Additionally, Dynamo used Merkle trees to sum-
marize and exchange data contents between replicas [21, Section
4.7]. However, not all Dynamo-style data stores actively employ
similar gossip-based anti-entropy. For example, Cassandra only
uses Merkle tree anti-entropy when it is manually requested (e.g.,
nodetool repair), choosing to rely primarily on quorum expan-
sion and read repair [5].

Both of these processes are rate-dependent: read repair effects
depend on the rate of reads, and Merkle tree exchange effects (and,
more generally, most anti-entropy processes) depend on the rate of
exchange. A conservative assumption for read repair and Merkle
tree exchange is that they never occur; for example, without ad-

ditional modifications to the Dynamo protocol, assuming a read
repair rate is equivalent to assuming a rate of reads from each key
in the system. WARS only captures expanding quorum behavior
but is read rate independent and makes conservative assumptions
about the write rate. If multiple writes overlap (that is, have over-
lapping periods where they are in-flight but are not committed) the
probability of inconsistency decreases. Intuitively, this is because
overlapping writes result in an increased chance that a client reads
as-yet-uncommitted data. Versions may be fresher than predicted.

4.3 Asynchronous Staleness Detection
Even if a system provides a low probability of inconsistency, ap-

plications may need to be notified when data returned is inconsis-
tent or staler than expected. Here, as a side note, we discuss how
the Dynamo protocol is naturally equipped for staleness detection.
The following discussion is couched in the terms of PBS t-visibility
but is easily extended to PBS k-staleness and 〈k, t〉-staleness.

Knowing whether a response is stale at read time requires strong
consistency. By checking all possible values in the domain against
a hypothetical staleness detector, we could determine the consis-
tent value to return. While we cannot do so synchronously, we
can determine staleness asynchronously. Asynchronous staleness
detection allows speculative execution [63] if a program contains
appropriate compensation logic.

We first consider a staleness detector providing false positives.
Recall that, in a Dynamo-style system, we wait for R of N replies
before returning a value. The remaining N − R replicas will still
reply to the read coordinator. Instead of dropping these messages,
the coordinator can compare them to the version it returned. If there
is a mismatch, then either the coordinator returned stale data, there
are in-flight writes in the system, or additional versions committed
after the read. The latter two cases, relating to data committed after
the response was initiated, lead to false positives. In these cases, the
read did not return “stale” data even though there were newer but
uncommitted versions in the system. Notifying clients about newer
but uncommitted versions of a data item is not necessarily bad but
may be unnecessary and violates our staleness semantics. This de-
tector does not require modifications to the Dynamo protocol and
is similar to the read-repair process.

To eliminate these uncommitted-but-newer false positives, we
need to determine the total, system-wide commit ordering of writes.
Recall that replicas are unaware of the commit time for each ver-
sion; commits occur after W replicas respond, and the timestamps
stored by replicas are not updated after commit. Establishing a to-
tal ordering is a well-known distributed systems problem that could
be accomplished in Dynamo using a centralized service [36] or us-
ing distributed consensus [43]. This requires modifications to the
Dynamo protocol but is feasible.

5. EVALUATING DYNAMO T -VISIBILITY
As discussed in Section 3.3, PBS t-visibility depends on the

propagation of reads and writes throughout a system. We intro-
duced the WARS model as a means of reasoning about inconsis-
tency in Dynamo-style quorum systems, but quantitative metrics
such as staleness observed in practice depend on each of WARS’s
latency distributions. In this section, we perform an analysis of
Dynamo-style t-visibility to better understand how frequently “even-
tually consistent” means “consistent” and, more importantly, why.

PBS k-staleness is easily captured in closed form (Section 3.1).
It does not depend on write latency or any environmental variables.
Indeed, in practice, without expanding quorums or anti-entropy, we
observe that our derived equations hold true experimentally.
t-visibility depends on anti-entropy, which is substantially more

complicated. In this section, we focus on deriving experimental
expectations for PBS t-visibility. While we could improve the stal-
eness results by considering additional anti-entropy processes (Sec-
tion 4.2), we make the bare minimum of assumptions required by
the WARS model. Conservative analysis decreases the number of
experimental variables (supported by empirical observations from
practitioners) and increases the applicability of our results.

5.1 Monte Carlo Simulation
In light of the complicated analytical formulation discussed in

Section 4.1, we implemented WARS in an event-driven simulator
for use in Monte Carlo methods. Calculating t-visibility for a given
value of t is straightforward: drawN samples from W, A, R, and S at
time t (denote index i as [i]), compute wt, the W th smallest value
of the respective W+A values, and check whether the firstR samples
of R, ordered by R[i]+S[i] obey wt+R[i]+ t ≤ W[i]. This requires
only a few lines of code. Extending this formulation to analyze
〈k, t〉-staleness given a distribution of write arrival times requires
accounting for multiple writes across time but is not difficult.

5.2 Model Validation
To validate WARS (and our subsequent analyses), we compared

our predicted t-visibility and latency with measured values observed
in a commercially available, open source Dynamo-style key-value
store. We modified Cassandra to provide latency measurements,
disabled read repair (as it is external to WARS), and, for reads,
only considered the first R responses (often, more than R mes-
sages would arrive by the processing stage, decreasing staleness).
We ran Cassandra on a cluster of four nodes with 2.2GHz AMD
Opteron 2214 dual-core SMT processors with 4GB of 667MHz
DDR2 memory serving in-memory data. To measure staleness, we
inserted monotonically increasing versions of a key while concur-
rent processes read values. Solely for the purpose of validation
across several conditions, we injected additional latency into Cas-
sandra’s messaging.

Our observations matched the WARS predictions. We injected
each combination of W = λ ∈ {0.05, 0.1, 0.2} (respective means
20ms, 10ms and 5ms) and A=R=S = λ ∈ {0.1, 0.2, 0.5} (respec-
tive means 10ms, 5ms and 2ms) across 50,000 writes. After empir-
ically measuring the WARS distributions, consistency, and latency
for each partial quorum configuration, we predicted t-visibility and
latency. Our average t-visibility prediction RMSE was 0.28% (std.
dev. 0.05%, max. 0.53%) for each t ∈{1,. . . ,199} ms. Our pre-
dicted latency (for each of the {1.0, . . . , 99.9th} percentiles for
each configuration) had an average N-RMSE of 0.48% (std. dev.
0.18%, max. 0.90%). This validates our Monte Carlo simulator.

5.3 Write Latency Distribution Effects
As discussed in Section 4.1, the WARS model of Dynamo-style

systems dictates that high one-way write variance (W) increases stal-
eness. To quantify these effects, we swept a range of exponentially
distributed write distributions (changing parameter λ, which dic-
tates the mean and tail of the distribution) while fixing A=R=S.

Our results, shown in Figure 4, confirm that probability of con-
sistency is highly influenced by the write variance. When the vari-
ance of W is 0.0625ms (λ = 4, mean .25ms, one-fourth the mean
of A=R=S), we observe a 94% chance of consistency immediately
after the write and 99.9% chance after 1ms. However, when the
variance of W is 100ms (λ = .1, mean 10ms, ten times the mean
of A=R=S), we observe a 41% chance of consistency immediately
after write and a 99.9% chance of consistency only after 65ms. As
the variance and mean increase, so does the probability of inconsis-
tency. Under distributions with fixed means and variable variances

0 2 4 6 8 10
t-visibility (ms)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(c

on
si

st
en

cy
)

ARSλ:Wλ

1:4
1:2
1:1

1:0.50
1:0.20
1:0.10

Figure 4: t-visibility for N=3, R=W=1 varying exponentially
distributed latencies (parameter λ) for W and A=R=S. Mean la-
tency is 1/λ.

%ile Latency (ms)
15,000 RPM SAS Disk
Average 4.85

95 15
99 25
Commodity SSD

Average 0.58
95 1
99 2

Table 1: LinkedIn Voldemort single-node production latencies.

(uniform, normal), we observe that the mean of W is less important
than its variance if W is strictly greater than A=R=S.

Decreasing the mean and variance of W improves the probability
of consistent reads. This means that, as we will see, techniques that
lower one-way write latency result in lower t-visibility. Instead of
increasing read and write quorum sizes, operators could chose to
lower (relative) W latencies through additional hardware configura-
tion and specialization or by artificially delaying reads. This lat-
ter option is potentially detrimental to performance for read-heavy
workloads and may introduce undesirable queuing effects.

5.4 Production Latency Distributions
To study WARS in greater detail, rather than conjecture as to what

represent “reasonable” distributions, we gathered production statis-
tics from two internet-scale companies.

LinkedIn6 is an online professional social network with over 135
million members as of November 2011. To provide highly avail-
able, low latency data storage, engineers at LinkedIn built Volde-
mort. Alex Feinberg, a lead engineer on Voldemort, graciously pro-
vided us with latency distributions for a single node replaying peak
load traffic for a user-facing service at LinkedIn, representing 60%
read and 40% read-modify-write traffic [23] (Table 1). Feinberg re-
ports that, using spinning disks, Voldemort is “largely IO bound and
latency is largely determined by the kind of disks we’re using, [the]
data to memory ratio and request distribution.” With solid state
drives (SSDs), Voldemort is “CPU and/or network bound (depend-
ing on value size).” As an interesting aside, Feinberg also notes that
“maximum latency is generally determined by [garbage collection]
activity (rare, but happens occasionally) and is within hundreds of
milliseconds.”

Yammer7 is an online, private social networking to over 100,000
companies as of December 2011 that uses Basho’s Riak for some
client data [3]. Coda Hale, infrastructure architect, and Ryan Kennedy,

6LinkedIn. www.linkedin.com
7Yammer. www.yammer.com

%ile Read Latency (ms) Write Latency (ms)
Min 1.55 1.68
50 3.75 5.73
75 4.17 6.50
95 5.2 8.48
98 6.045 10.36
99 6.59 131.73

99.9 32.89 435.83
Max 2979.85 4465.28
Mean 9.23 8.62

Std. Dev. 83.93 26.10
Mean Rate 718.18 gets/s 45.65 puts/s

Table 2: Yammer RiakN=3,R=2,W=2 production latencies.

LNKD-SSD

W = A = R = S :
91.22%: Pareto, xm = .235, α = 10

8.78%: Exponential, λ = 1.66
N-RMSE: .55%

LNKD-DISK

A = R = S : LNKD-SSD
W:
38%: Pareto, xm = 1.05, α = 1.51

62%: Exponential, λ = .183
N-RMSE: .26%

YMMR

W:
93.9%: Pareto, xm = 3, α = 3.35

6.1%: Exponential, λ = .0028
N-RMSE: 1.84%

A = R = S :
98.2%: Pareto, xm = 1.5, α = 3.8

1.8%: Exponential, λ = .0217
N-RMSE: .06%

Table 3: Distribution fits for production latency distributions
(see Appendix B) from LinkedIn (LNKD-*) and Yammer (YMMR).

also of Yammer, presented in-depth performance and configuration
details for their Riak usage in March 2011 [31]. Hale provided us
with more detailed performance statistics for their application [30]
(Table 2). He also noted that “reads and writes have radically dif-
ferent expected latencies, especially for Riak.” Writes are delayed
“until the fsync returns, so while reads are often < 1ms, writes
rarely are.” As we will see, this has important consequences for
WARS. Although we do not model this explicitly, Hale also notes
that the size of values is important, claiming “a big performance
improvement by adding LZF compression to values.”

We fitted the distributions given by LinkedIn (LNKD-DISK and
LNKD-SSD for the disk and SSD numbers, respectively) and Yam-
mer (YMMR), as described in detail in Appendix B. We also consid-
ered a wide-area network replication scenario, denoted WAN. Reads
and writes are routed to random data centers, and, accordingly, one
replica operation completes quickly while the others are routed re-
motely. We delay remote operations and responses by 75ms and
apply LNKD-DISK delays once the operation reaches its target data
center, representing multi-continent WAN network delay [20]

We show the parameters for each distribution in Table 3. We
plot each fitted distribution in Figure 5. Note that for R, W of one,
LNKD-DISK is not equivalent to WAN. This is because, in LNKD-DISK,
we only have to wait for the first ofN local reads (writes) to return,
whereas, for WAN, there is only one local read (write) and all other
read (write) requests are delayed at least 150ms.

5.5 Observed t-visibility
We measured the t-visibility for each distribution (Figure 6).

As we observed under synthetic distributions in Section 5.3, the

t-visibility depended on both the relative mean and variance of W.
LNKD-SSD and LNKD-DISK demonstrate the importance of write

latency in practice. Immediately after write commit, LNKD-SSD had
a 97.4% probability of consistent reads, reaching over a 99.999%
probability of consistent reads after five milliseconds. LNKD-SSD’s
reads briefly raced its writes immediately after commit. Several
millisecond after the write, the chance of a read round-trip expe-
riencing reordering with the write was almost completely elimi-
nated. The distribution’s read and write operation latencies were
rather small (median .489ms), and due to its short tail (99.9th per-
centile .657ms), writes completed quickly across all replicas. In
contrast, under LNKD-DISK, writes take significantly longer (me-
dian 1.50ms) and have a longer tail (99.9th percentile 10.47 ms).
This difference is reflected in its t-visibility: LNKD-DISK had only a
43.9% probability of consistent reads immediately after write com-
mit and only a 92.5% probability ten milliseconds later. This sug-
gests that SSDs may drastically improve consistency in practice
due to reducing replica write time.

We experienced similar effects with the other distributions. Im-
mediately after commit, YMMR had a 89.3% chance of consistency
due to its tall body. However, YMMR’s long tail hampered its t-
visibility increase and reached a 99.9% probability of consistency
1364 ms after commit. As expected, WAN observed poor chances of
consistency until after the 75 milliseconds passed (33% after com-
mit); unless a client read from the same datacenter in which the last
write committed, it had to wait for the long propagation delay to
observe the most recent value.

5.6 Quorum Sizing
In addition to N=3, we consider how varying the number of

replicas (N) affects t-visibility while maintaining R=W=1. The
results, depicted in Figure 7, show that the probability of consis-
tency immediately after write commit decreases as N increases.
With 2 replicas, LNKD-DISK has a 57.5% probability of consis-
tent reads immediately after commit but only a 21.1% probability
with 10 replicas. However, at high probabilities of consistency, the
wait time required for increased replica sizes is surprisingly close.
For LNKD-DISK, the t-visibility at 99.9% probability of consistency
ranges from 45.3ms for 2 replicas to 53.7ms for 10 replicas.

These results imply that even if we choose to maintain a large
number of replicas for availability or better performance, the t-
visibility staleness will still converge relatively quickly for larger
t. However, increasing N will have a larger impact on the con-
sistency immediately after writing. In practice, the relative write
distribution tail length (describing replica convergence speed) will
again dictate whether this trade-off is appropriate.

5.7 Latency vs. t-visibility
As we have discussed, choosing a value for R and W is a trade-

off between operation latency and t-visibility. To measure the ob-
tainable latency gains, we compared t-visibility required for a 99.9%
probability of consistent reads to the 99.9th percentile read and
write latencies.

Partial quorums can have a large impact on latency at a variable
cost to t-visibility (Table 4). For YMMR, R=W=1 results in low
latency reads and writes (16.4ms) but high t-visibility (1364ms).
However, by settingR=2 andW=1, we reduce t-visibility to 202ms
and the combined read and write latencies are 81.1% (186.7ms)
lower than the fastest strict quorum (W=1, R=3). LNKD-DISK

read and write latencies can be reduced by 16.5% (2.48ms) with
t-visibility of 13.6ms. The write tail of LNKD-SSD was such that
we never observed message reordering forR=2, W=1, allowing a
30% (.98ms) latency reduction with no observable staleness (even

LNKD-SSD LNKD-DISK YMMR WAN

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

R=1

10−2 10−1 100 101 102 103

Read Latency (ms)

0.2
0.4
0.6
0.8
1.0

R=2

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

R=3

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10−2 10−1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

Figure 5: Read and write operation latency for production fits for N=3. Note that, for reads, LNKD-SSD is equivalent to LNKD-DISK.

R=1 W=1 R=1 W=2 R=2 W=1

P
(c

on
si

st
en

cy
)

0.5 1.0 1.5 2.00.970

0.975

0.980

0.985

0.990

0.995

1.000 LNKD-SSD

101 1020.4

0.5

0.6

0.7

0.8

0.9

1.0 LNKD-DISK

101 1020.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 WAN

101 102 1030.88

0.90

0.92

0.94

0.96

0.98

1.00 YMMR

t-visibility (ms)

Figure 6: t-visibility for production operation latencies.

across 10M writes, “seven nines”). R=W=1 reduced latency by
59.5% (1.94ms) with a corresponding t-visibility of 1.85ms. Un-
der WAN, R > 1 or W > 1 results in a large latency increase be-
cause operations require remote messaging to complete. These re-
sults indicate that lowering values ofR andW can significantly im-
prove operation latency and that t-visibility can be low even when
we require a high probability of consistent reads.

6. DISCUSSION AND FUTURE WORK
In this section, we discuss several enhancements to partial quo-

rum systems that PBS enables along with future work for PBS.
Latency/Staleness SLAs. Using PBS, we can automatically

configure replication parameters by optimizing operation latency
given constraints on staleness and minimum durability. Data store
operators can subsequently provide service level agreements to ap-
plications and quantitatively describe latency/staleness trade-offs to
developers. Operators can dynamically configure replication using
online latency measurements. PBS provides a quantitative lens for
analyzing consistency guarantees that were previously unknown.
This optimization formulation is likely non-convex, but the state
space for configurations is small (O(N2)). This optimization also
allows disentanglement of replication for reasons of durability from
replication for reasons of low latency and higher capacity. For ex-
ample, operators can specify a minimum replication factor for dura-
bility and availability but may want to automatically increase N ,
decreasing tail latency for fixed R and W .

Variable configurations. We have assumed the use of a single
replica configuration (N , R, and W) across all operations. How-
ever, one could consider varying these operations over time and
across keys, and many data stores such as Cassandra and Riak al-
low the use of per-operation consistency settings. By specifying an
average operation latency, one could periodically modifyR andW
to more efficiently guarantee a desired bound on staleness. Simi-
larly, varying load, one could change the the number of replicas and
scale R and W , requiring additional refinements to our model and
essentially revisiting prior work on fluid replication [54].

Stronger guarantees. We have focused on probabilistic stale-
ness analysis, but there is a range of stronger models (such as causal
consistency) within the spectrum of eventual consistency [62]. Pre-
dicting the probability of attaining more complex consistency se-
mantics requires additional modeling of application access patterns.
This is possible, but we suspect that modeling the worst-case se-
mantics of these operations will result in unfavorably low prob-
abilities of consistent operations. We can see this in Aiyer et al.’s
analysis of Byzantine k-quorums [11]: in a worst-case deployment,
with an adversarial scheduler, the lower bound on staleness is quite
high. We conjecture that the bound would be even higher had the
authors performed an analysis of stronger consistency models.

Alternative architectures. Dynamo is conceptually easy to un-
derstand and implement (WARS) but is painful to analyze analyti-
cally. Is there a design that finds a better middle ground between
operational elegance and simplicity of analysis within the eventu-
ally consistent design space? Prior work on deterministic bounded
staleness (Section 7) provides guidance but often sacrifices avail-
ability and may be more complex to reason about.

Multi-key operations. We have considered single-key opera-
tions, however the ability to perform multi-key operations is poten-
tially attractive. For read-only transactions, if the key distribution is
random and each quorum is independent, we can multiply the stal-
eness probabilities of each key. Achieving atomicity of writes to
multiple keys requires more complicated coordination mechanisms
such as two-phase commit, increasing operation latency. Transac-
tions are feasible but require considerable care in implementation,
complicating what is otherwise a simple replication scheme.

Failure modes. In our evaluation of t-visibility, we focused on
normal operating conditions. Unless failures are common-case,
they affect tail staleness probabilities (which appear as latency spikes
in WARS). For example, if, as Jeff Dean of Google suggests [20],
servers crash at least twice per year, given a ten hour downtime
per failure, this roughly represents .23% downtime per machine
per year. If failures are correlated, this small percentage may be a
problem. However, if they are independent, a replica set ofN nodes

N: 2 3 5 10

5 10 15 200.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

(C
on

si
st

en
cy

)
LNKD-DISK

0.5 1.0 1.5 2.0
t-visibility (ms)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
LNKD-SSD

20 40 60 800.0

0.2

0.4

0.6

0.8

1.0
WAN

Figure 7: t-visibility for production operating latencies for variable N and R=W=1.

LNKD-SSD LNKD-DISK YMMR WAN

Lr Lw t Lr Lw t Lr Lw t Lr Lw t
R=1, W=1 0.66 0.66 1.85 0.66 10.99 45.5 5.58 10.83 1364.0 3.4 55.12 113.0
R=1, W=2 0.66 1.63 1.79 0.65 20.97 43.3 5.61 427.12 1352.0 3.4 167.64 0
R=2, W=1 1.63 0.65 0 1.63 10.9 13.6 32.6 10.73 202.0 151.3 56.36 30.2
R=2, W=2 1.62 1.64 0 1.64 20.96 0 33.18 428.11 0 151.31 167.72 0
R=3, W=1 4.14 0.65 0 4.12 10.89 0 219.27 10.79 0 153.86 55.19 0
R=1, W=3 0.65 4.09 0 0.65 112.65 0 5.63 1870.86 0 3.44 241.55 0

Table 4: t-visibility for pst = .001 (99.9% probability of consistency for 50, 000 reads and writes) and 99.9th percentile read (Lr)
and write latencies (Lw) across R and W , N=3 (1M reads and writes). Significant latency-staleness trade-offs are in bold.

with F failed nodes behaves like an N −F replica set. The proba-
bility of all N nodes failing is (.23)N% (“five nines” reliability for
N=3) and will likely be hidden in the probability tail. Quantifying
this impact more precisely would be beneficial but requires addi-
tional information about failure rates and their impact on latency
distributions. Additionally, modeling recovery semantics such as
hinted handoff would also be useful.

7. RELATED WORK
We surveyed quorum replication techniques [7, 8, 9, 10, 11, 26,

29, 34, 37, 50, 52, 53] in Section 2. In this work, we specifically
draw inspiration from probabilistic quorums [50] and determinis-
tic k-quorums [10, 11] in analyzing expanding quorum systems
and their consistency. We believe that revisiting probabilistic quo-
rum systems—including non-majority quorum systems such as tree
quorums—in the context of write propagation, anti-entropy, and
Dynamo is a promising area for theoretical work.

Data consistency is a long-studied problem in distributed sys-
tems [19, 28] and concurrent programming [35]. Given the CAP
Theorem and the inability to maintain all three of consistency, avail-
ability, and partition tolerance [27], data systems have turned to
“eventually consistent” semantics to provide availability in the face
of partitions [18, 62]. Real-time consistency (RTC) is the strongest
consistency model achievable in an available, one-way convergent
(eventually consistent) system [49], however there is a plethora of
alternative consistency models offering various performance trade-
offs, from session guarantees [61] to causal+ consistency [47] and
parallel snapshot isolation [58]. Instead of proposing a new con-
sistency model and building a system implementing new seman-
tics, we have examined what consistency existing, widely deployed
quorum-replicated systems actually provide.

There are several systems that provide deterministic bounds on
staleness. FRACS [67] allows replicas to buffer updates up to a
given staleness threshold under several replication schemes, includ-
ing master-drive and group gossip. AQuA [40] asynchronously
propagates updates from a designated master to replicas that in
turn serve reads with bounded staleness. AQuA actively selects
which replicas to contact depending on response time predictions
and a guaranteed staleness bound. TRAPP [55] provides trade-offs

between precision and performance for continuously evolving nu-
merical data. TACT [65, 66] models consistency along three axes:
numerical error, order error, and staleness. TACT bounds staleness
by ensuring that each replica (transitively) contacts all other repli-
cas in the system within a given time window. Finally, POL [13]
bounds the number of operations performed per query, trading op-
eration latency at scale with the amount of data a particular query
can access, impacting accuracy.

In this work, we analyze quorum replication systems and the
consistency provided by real-world Dynamo-style quorum systems.
The aforementioned deterministic bounded staleness systems rep-
resent the deterministic dual of PBS, and their algorithms could be
employed in an expanding partial quorum system like Dynamo.

8. CONCLUSION
In this paper, we introduced Probabilistic Bounded Staleness,

which models the expected staleness of data returned by eventu-
ally consistent quorum-replicated data stores. By extending prior
theory on probabilistic quorum systems, we derived an analytical
solution for the k-staleness of a partial quorum system, represent-
ing the expected staleness of a read operation in terms of versions.
We analyzed the t-visibility, or expected staleness of a read in terms
of real time, under Dynamo-style quorum replication. To do so, we
developed the the WARS latency model to explain how message re-
ordering leads to staleness under Dynamo. To examine the effect of
latency on t-staleness in practice, we used real-world traces from
internet companies to drive a Monte Carlo analysis. We find that
eventually consistent quorum configurations are frequently consis-
tent after tens of milliseconds while offering latency benefits, ex-
plaining the prevalence of partial quorum configurations in prac-
tice. We conclude that “eventually consistent” partial quorum repli-
cation schemes frequently deliver consistent semantics in practice
due largely to the resilience of Dynamo-style messaging.

Interactive Demonstration
An interactive demonstration of Dynamo-style PBS is available on-
line at http://www.bailis.org/projects/pbs/.

Acknowledgments
The authors would like to thank Alex Feinberg and Coda Hale for
their cooperation in providing real-world distributions for experi-
ments and for exemplifying positive industrial-academic relations
through their conduct and feedback.

The authors would also like to thank the following individu-
als whose discussions and feedback improved this work: Marcos
Aguilera, Peter Alvaro, Eric Brewer, Neil Conway, Greg Durrett,
Hariyadi Gunawi, Sam Madden, Bill Marczak, Kay Ousterhout,
Christopher Ré, Scott Shenker, Sriram Srinivasan, Doug Terry, Greg
Valiant, and Patrick Wendell. We would especially like to thank
Bryan Kate for his extensive feedback and Ali Ghodsi, who, in ad-
dition to providing feedback, originally piqued our interest in theo-
retical quorum systems.

This work was supported in part by gifts from Google, SAP,
Amazon Web Services, Blue Goji, Cloudera, Ericsson, General
Electric, Hewlett Packard, Huawei, IBM, Intel, MarkLogic, Mi-
crosoft, NEC Labs, NetApp, Oracle, Quanta, Splunk, and VMware
and by DARPA (contract #FA8650-11-C-7136). This material is
based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant DGE 1106400.

9. REFERENCES
[1] Apache Cassandra 1.0 documentation: About data consistency in

Cassandra. http:
//www.datastax.com/docs/1.0/dml/data_consistency.

[2] Apache Cassandra Jira: “support session (read-after-write)
consistency”.
https://issues.apache.org/jira/browse/CASSANDRA-876.
October 2010 (accessed 13 December 2011).

[3] Basho Riak. http://basho.com/products/riak-overview/.
[4] Cassandra 1.0 Thrift Configuration.

https://github.com/apache/cassandra/blob/
cassandra-1.0/interface/cassandra.thrift.

[5] Cassandra wiki: Operations.
http://wiki.apache.org/cassandra/Operations#
Repairing_missing_or_inconsistent_data. Accessed 13
December 2011.

[6] D. Abadi. DBMS Musings: Replication and the latency-consistency
tradeoff. http://dbmsmusings.blogspot.com/2011/12/
replication-and-latency-consistency.html. 7 December
2011.

[7] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic
systems (extended abstract). In DISC 2003.

[8] D. Agrawal and A. E. Abbadi. Resilient logical structures for
efficient management of replicated data. In VLDB 1992.

[9] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data. In VLDB 1990.

[10] A. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability of non-strict
quorum systems. In DISC 2005.

[11] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and multi-writer
k-quorums. In DISC 2006.

[12] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency Analysis in Bloom: a CALM and Collected Approach.
In CIDR 2011.

[13] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A.
Patterson. PIQL: Success-tolerant query processing in the cloud. In
VLDB 2012.

[14] Basho Technologies, Inc. Riak wiki: Riak > concepts > replication.
http://wiki.basho.com/Replication.html. Accessed 13
December 2011.

[15] Basho Technologies, Inc. riak kv 1.0 application.
https://github.com/basho/riak_kv/blob/1.0/src/riak_
kv_app.erl.

[16] J. Bellis. Revision 986783: revert ’per-connection read-your-writes
”session” consistency’. http://svn.apache.org/viewvc?view=
revision&revision=986783. 18 August 2010, one week after

original patch accepted.
[17] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud

computing research agenda. SIGACT News, 40(2):68–80, June 2009.
[18] S. Davidson, H. Garcia-Moina, and D. Skeen. Consistency in

partitioned networks. ACM Computing Surveys, 17(3):314–370,
1985.

[19] S. B. Davidson. Optimism and consistency in partitioned distributed
database systems. ACM Transactions on Database Systems,
9(3):456–481, September 1984.

[20] J. Dean. Designs, lessons, and advice from building large distributed
systems. Keynote from LADIS 2009.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s highly available key-value store. In
SOSP 2007.

[22] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In PODC 1987.

[23] A. Feinberg. Personal communication. 23, 24 October, 14, 19, 21, 30
November, 1 December 2011.

[24] A. Feinberg. Project Voldemort: Reliable distributed storage. In
ICDE 2011.

[25] A. W. Fu. Delay-optimal quorum consensus for distributed systems.
IEEE Transactions on Parallel and Distributed Systems, 8(1):59–69,
1997.

[26] D. K. Gifford. Weighted voting for replicated data. In SOSP 1979.
[27] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. SIGACT News,
33:51–59, June 2002.

[28] J. Gray, P. Helland, P. ONeil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD 1996.

[29] A. Gupta, B. M. Maggs, F. Oprea, and M. K. Reiter. Quorum
placement in networks to minimize access delays. In PODC 2005.

[30] C. Hale. Personal communication. 16 November 2011.
[31] C. Hale and R. Kennedy. Using Riak at Yammer. http://dl.

dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf.
23 March 2011.

[32] J. Hamilton. Perspectives: I love eventual consistency but...
http://perspectives.mvdirona.com/2010/02/24/
ILoveEventualConsistencyBut.aspx. 24 February 2010.

[33] P. Helland and D. Campbell. Building on quicksand. In CIDR 2009.
[34] M. Herlihy. Dynamic quorum adjustment for partitioned data. ACM

Transactions on Database Systems, 12 (2):170–194, 1987.
[35] M. Herlihy and J. M. Wing. Linearizability: a correctness condition

for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, June 1990.

[36] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for internet-scale systems. In USENIX ATC
2010.

[37] R. Jiménez-Peris, M. Patiño Martı́nez, G. Alonso, and K. Bettina.
Are quorums an alternative for data replication? ACM Trans.
Database Syst., 28:257–294, September 2003.

[38] D. King. As keltranis, comment on ”reddit’s now running on
cassandra”.
http://www.reddit.com/r/programming/comments/bcqhi/
reddits_now_running_on_cassandra/c0m3wh6. March 2010.

[39] J. Kirkell. Consistency or bust: Breaking a Riak cluster.
http://www.oscon.com/oscon2011/public/schedule/
detail/19762. Talk at O’Reilly OSCON 2011, 27 July 2011.

[40] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive
quality of service aware middleware for replicated services. IEEE
Transactions on Parallel and Distributed Systems, 14(11), November
2003.

[41] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A
structured storage system on a P2P network. In SIGMOD 2008.

[42] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[43] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[44] G. Linden. Make data useful. https://sites.google.com/

site/glinden/Home/StanfordDataMining.2006-11-29.ppt.
29 November 2006.

[45] G. Linden. Marissa Mayer at Web 2.0. http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.html. 9
November 2006.

[46] B. Liskov. Practical uses of synchronized clocks in distributed
systems. In PODC 1991.

[47] W. Lloyd, M. J. Freedmand, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area
storage with COPS. In SOSP 2011.

[48] J. Lynch. Rolling with Riak. http://sdruby.org/podcast/81.
Talk presented at SD Ruby meeting (Podcast 81), 2010.

[49] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability,
convergence. Technical Report TR-11-22, Computer Science
Department, University of Texas at Austin, May 2011.

[50] D. Malkhi, M. Reiter, A. Wool, and R. Wright. Probabilistic quorum
systems. Information and Communication, (170):184–206, 2001.

[51] A. Marcus. The NoSQL Ecosystem. In A. Brown and G. Wilson,
editors, The Architecture of Open Source Applications, pages
185–205. 2011.

[52] M. Merideth and M. Reiter. Selected results from the latest decade of
quorum systems research. In Replication, volume 5959 of Lecture
Notes in Computer Science, pages 185–206. Springer, 2010.

[53] M. Naor and A. Wool. The load, capacity, and availability of quorum
systems. SIAM Journal on Computing, 27:214–225, 1998.

[54] B. Noble, B. Fleis, and M. Kim. A case for fluid replication. In
Proceedings of the 1999 Network Storage Symposium (Netstore).

[55] C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated data. In VLDB 2000.

[56] Outbrain Inc. Introduction to no:sql [sic] and Cassandra (and
Outbrain). https://docs.google.com/present/view?id=
ahbp3bktzpkc_220f7v26vg7. January 2010.

[57] E. Schurman and J. Brutlag. Performance related changes and their
user impact. Presented at Velocity Web Performance and Operations
Conference, June 2009.

[58] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP 2011.

[59] M. Stonebraker. Urban myths about SQL. VoltDB Webinar, 11 June
2010.

[60] R. Sumbaly. Voldemort wiki: How to write own client.
https://github.com/voldemort/voldemort/wiki/
Writing-own-client-for-Voldemort. 16 June 2011 (accessed
21 December 2011).

[61] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly consistent
replicated data. In PDIS 1994.

[62] W. Vogels. Eventually consistent. Commun. ACM, 52:40–44, January
2009.

[63] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and
B. Liskov. Tolerating latency in replicated state machines through
client speculation. In NSDI 2009.

[64] D. Williams. HBase vs Cassandra: why we moved.
http://ria101.wordpress.com/2010/02/24/
hbase-vs-cassandra-why-we-moved. 24 February 2010
(accessed 13 December 2011).

[65] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM
Transactions on Computer Systems, 20(3):239–282, August 2002.

[66] H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. ACM Transactions on Computer Systems,
24(1):70–113, February 2006.

[67] C. Zhang and Z. Zhang. Trading replication consistency for
performance and availability: an adaptive approach. In ICDCS 2003.

APPENDIX A: LOAD AND PBSk-STALENESS
Theory literature defines the load of a quorum system as a met-
ric for the frequency of accessing the busiest quorum member [53,
Definition 3.2]. Intuitively, the busiest quorum member limits the
number of requests that a given quorum system can sustain, called
its capacity [53, Corollary 3.9].

Prior work determined that probabilistic quorum systems did not
offer significant benefits to load (providing a constant factor im-
provement compared to strict quorum systems) [50]. Here, we
show that quorums tolerating PBS k-staleness have asymptotically
lower load than traditional probabilistic quorum systems (and, tran-
sitively, than strict quorum systems).

The probabilistic quorum literature defines an ε-intersecting quo-
rum system as a quorum system that provides a 1 − ε probability
of returning consistent data [50, Definition 3.1]. A ε-intersecting
quorum system has load of at least 1−

√
ε√

N
[50, Corollary 3.12].

In considering k versions of staleness, we consider the intersec-
tion of k ε-intersecting quorum systems. For a given probabil-
ity p of inconsistency, if we are willing to tolerate k versions of
staleness, we need only require that that ε = k

√
p. This implies

that our PBS k-staleness system construction has load of at least
(1−p)

1
2k√

N
, an improved lower bound compared to traditional proba-

bilistic quorum systems. PBS monotonic reads consistency results

in a lower bound on load of (1−p)
1

2C√
N

, where C = 1 +
γgw
γcr

.
These results are intuitive: if we are willing to tolerate multi-

ple versions of staleness, we need to contact fewer replicas. Stal-
eness tolerance lowers the load of a quorum system, subsequently
increasing its capacity.

APPENDIX B: LATENCY MODEL FITTING
While the provided production figures are invaluable, they are under-
specified for WARS. First, the data are summary statistics, but WARS
requires distributions. More importantly, the operation latencies
represent round-trip times, while WARS requires the constituent
one-way latencies for both reads and writes. As our validation
demonstrated, these latency distributions are easily collected, but,
because they are not currently collected in production, we must fill
in the gaps. Accordingly, to fit W, A, R, and S for each configuration,
we made a series of assumptions, which we believe are justified
given the benefit of production data. Without additional data on
the latency required to read multiple replicas, we assume that each
latency distribution is independently, identically distributed (IID).
Each configuration fit a mixture model with two separate distribu-
tions, one for the body and the other for the tail.

LinkedIn provided two latency distributions, whose fits we de-
note LNKD-SSD and LNKD-DISK for the SSD and spinning disks,
respectively. As previously discussed, when running on SSDs,
Voldemort is largely network and CPU bound. Accordingly, for
LNKD-SSD, we assumed that read and write operations took equiv-
alent amounts of time and, to allocate the remaining time, we fo-
cused on the network-bound case and assumed that one-way mes-
sages were symmetric (W=A=R=S). Feinberg reported that Volde-
mort performs at least one read before every write (average of 1
seek, between 1-3 seeks), and writes to the BerkeleyDB Java Edi-
tion backend are flushed either every 30 seconds or 20 megabytes—
whichever comes first. Accordingly, for LNKD-DISK, we used the
same A=R=S as LNKD-SSD but fit W separately.

Yammer provided distributions for a single configuration, de-
noted YMMR, but separated read and write latencies. Under our
IID assumptions, we fit single-node latency distributions to the pro-
vided data, again assuming symmetric A, R, and S. The data again
fit a Pareto distribution with a long exponential tail. At the 98th
percentile, the write distribution takes a sharp turn. Fitting the data
closely resulted in an extremely long tail, with 99.99+th percentile
writes requiring tens of seconds—much higher than Yammer spec-
ified. Accordingly, we fit the 98th percentile knee conservatively;
without the 98th percentile, the write fit N-RMSE is .104%.

